<<234567>>
21.

If a,b,c are  distinct  real numbers are P,Q, R are three points  whose position  vectors are  respectively 

$a\hat{i}+b\hat{j}+c\hat{k},b\hat{i}+c\hat{j}+a\hat{k}$ and $c\hat{i}+a\hat{j}+b\hat{k}$  , then $\angle QPR$=


A) $\cos^{-1}(a+b+c)$

B) $\frac{\pi}{2}$

C) $\frac{\pi}{3}$

D) $\cos^{-1}\left(\frac{a^{2}+b^{2}+c^{2}}{abc}\right)$



22.

$\cos \left(\frac{\pi}{7}\right)\cos \left(\frac{2\pi}{7}\right)\cos \left(\frac{4\pi}{7}\right)=$


A) $\frac{-1}{8}$

B) $\frac{1}{8}$

C) $-\frac{3\sqrt{3}}{8}$

D) 1



23.

If   $x=\frac{2.5}{3.6}-\frac{2.5.8}{3.6.9}\left(\frac{2}{5}\right)+\frac{2.5.8.11}{3.6.9.12}\left(\frac{2}{5}\right)^{2}-... \infty$  then

$7^{2}(12x+55)^{3}$=


A) $3^{8}5^{3}$

B) $3^{8}5^{5}$

C) $3^{3}5^{5}$

D) $3^{3}5^{8}$



24.

The number of ways  in which four letters can be put in four addressed envelops so that no letter goes  into envelope  meant for it is


A) 8

B) 12

C) 16

D) 9



25.

If $\alpha_{1},\alpha_{2},.......,\alpha_{n}$  are the roots of $x^{n}+px+q=0$,  then ($\alpha_{n}-\alpha_{1})(\alpha_{n}-\alpha_{2})...............(\alpha_{n}-\alpha_{n-1})=$


A) $n \alpha^{n-1}+q$

B) $\alpha_{1}^{2}+\alpha_{2}^{2}+.....+\alpha_{n-1}^{2}$

C) $\alpha_{n}^{n-1}+p$

D) $n\alpha_{n}^{n-1}+p$



<<234567>>